29.11.2023

Нелинейными электрическими элементами цепи называются элементы, параметры которых зависят от напряжений, токов, магнитных пото. Нелинейные элементы и их характеристики Раздел ii. нелинейные цепи


Любая хаотическая система должна иметь нелинейные элементы или свойства. В линейной системе не может быть хаотических колебаний. В линейной системе периодические внешние воздействия вызывают после затухания переходных процессов периодический отклик того же периода (рис. 2.1). (Исключением являются параметрические линейные системы.) В механических системах возможны следующие нелинейные компоненты:

1) нелинейные упругие элементы;

Рис. 2.1. Схема возможных преобразований сигнала в линейных и нелинейных системах.

2) нелинейное затухание, подобное трению покоя и скольжения;

3) мертвый ход, зазор или билинейные пружины;

4) большинство гидродинамических явлений;

5) нелинейные граничные условия.

Нелинейные упругие эффекты могут быть связаны либо со свойствами веществ, либо с геометрическими особенностями. Например, соотношение напряжений в образце из резины и его деформации нелинейно. Однако, хотя соотношение напряжений и деформаций стали обычно линейно вплоть до предела текучести, сильные изгибы балки, плиты или оболочки могут быть нелинейно связаны с приложенными силами и моментами. Подобные эффекты, связанные с сильными смещениями или поворотами, в механике обычно называются геометрическими нелинейностями.

Нелинейные свойства электромагнитных систем обусловлены следующими факторами:

1) нелинейными сопротивлениями, емкостями или индуктивными элементами;

2) гистерезисом в ферромагнитных материалах;

3) нелинейными активными элементами, подобными вакуумным лампам, транзисторам и диодам;

4) эффектами, характерными для движущихся сред, например электродвижущей силой , где v - скорость, а В - магнитное поле;

5) электромагнитными силами, например , где J - ток, или , где М - дипольный магнитный момент.

Примерами нелинейных устройств являются такие обычные элементы электрических цепей, как диоды и транзисторы.

Рис. 2.2. Нелинейные задачи с несколькими положениями равновесия: а - продольный изгиб тонкого упругого стержня под действием осевой нагрузки на торце; 6 - продольный изгиб упругого стержня нелинейными магнитными массовыми силами.

Такие магнитные материалы, как железо, никель или ферриты характеризуются нелинейными материальными соотношениями между полем намагничивания и плотностью магнитного потока. С помощью операционных усилителей и диодов некоторым экспериментаторам удается собрать отрицательные сопротивления с билинейной вольт-амперной характеристикой (см. гл. 4).

Не во всякой системе легко выявить нелинейности, во-первых, потому что мы часто приучены рассуждать на языке линейных систем, а во-вторых, потому что основные компоненты системы могут быть линейными и нелинейность является тонким эффектом. К примеру, отдельные элементы фермы крепления могут быть линейно упругими, но они собраны так, что имеются зазоры и присутствует нелинейное трение. Таким образом, нелинейность может скрываться в граничных условиях.

В примере с изогнутым стержнем нелинейные элементы выделяются без труда (рис. 2.2). В любом механическом устройстве, имеющем более одного положения статического равновесия, присутствуют зазор, мертвый ход или нелинейная жесткость. В случае стержня, изогнутого нагрузкой на конце (рис. 2.2, а), виновником является геометрическая нелинейность жесткости. В стержне, изгибаемом магнитными силами (рис. 2.2, б), источником хаотического поведения системы являются нелинейные магнитные силы.


Нелинейными элементами, как уже указывалось, являются все полупроводниковые и электронные приборы, работающие с достаточно большими входными сигналами. На низких частотах эквивалентные схемы этих приборов можно представить в виде резистивных нелинейных элементов, особенности которых определяются вольт-амперными характеристиками, т. е. зависимостями токов от приложенных напряжений Мгновенное значение тока, протекающего через резистивный элемент, определяется по вольт-амперной характеристике напряжением в этот же момент времени. Поэтому резистивные нелинейные элементы называют также безынерционными нелинейными элементами.

На достаточно высоких частотах характеристики нелинейных элементов оказываются зависящими от частоты. Эта зависимость обусловлена:

соизмеримостью времени, затрачиваемого на движение носителей через прибор и процессы рекомбинации, с периодом воздействующих и а него колебаний. Если длительность этих процессов составляет заметную часть периода колебаний, выходной ток прибора отстает по фазе от входного сигнала, т. е. прибор становится инерционным. Инерционность прибора нередко учитывают

введением дополнительных частотно-зависимых реактивностей в эквивалентную схему.

Статические характеристики электронного прибора (они снимаются на постоянном токе) достаточно полно характеризуют прибор только в пределах тех частот, где его можно считать резистивным, т. е. безынерционным. На рис. 2.1 приведены вольт-амперные характеристики типовых нелинейных резисторов и их условные обозначения: полупроводникового (а) и туннельного (б) диодов, биполярного и полевого транзисторов, динистора Характеристики электронных ламп (диодов, триодов, тетродов, пентодов) сходны с приведенными на рис.

Характеристики бывают однозначные и многозначные. В однозначных каждому значению аргумента соответствует единственное значение функции при заданных величинах параметров (рис. 2.1 а, в-д). У вторых некоторым значениям одной величины соответствует несколько значений другой (рис. 2.16, е). Отметим, что гистерезисные характеристики являются многозначными.

Нелинейные элементы подразделяют на управляемые и неуправляемые. К первым относятся многоэлектродные приборы, имеющие раздельные вход и выход (транзисторы, сеточные электронные или ионные приборы), поскольку в них можно управлять выходной характеристикой изменением входного воздействия. Неуправляемыми являются двухэлектродные приборы (диоды).

Если известна некоторая (прямая) зависимость то зависимость называют обратной. Так, прямой характеристике соответствует обратная

Приборы, имеющие падающие участки на вольт-амперных характеристиках, где производные или называют приборами с отрицательным сопротивлением. В зависимости от того, какую букву напоминает форма характеристики прибора, различают два типа отрицательных сопротивлений: сопротивления -типа, вид вольт-амперной характеристики которых сходен с приведенной на рис. 2.16; они же называются отрицательными сопротивлениями, управляемыми напряжением, поскольку именно напряжение однозначно определяет режим их работы; сопротивления S-типа, вольт-амперные характеристики которых соответствуют рис. 2.1е; они же называются отрицательными сопротивлениями, управляемыми током, так как их режим однозначно определяется протекающим через прибор током. Если на рис. поменять местами координатные оси, то характеристика этого прибора примет -образный вид. Дифференциальные сопротивления элементов обоих типов являются отрицательными на участках и положительными за их пределами. Приборами -типа являются туннельные диоды, диоды Ганна, лампы при наличии в них динатронного эффекта; приборами -типа - некоторые ионные (газотроны, неоновые лампы) и полупроводниковые (динистры, тиристоры, лавинно-пролетные диоды) приборы.

Для расчета схем с нелинейными элементами применяются графические, аналитические и машинные методы. Достоинством графических методов является возможность наглядного определения токов и напряжений в схеме при заданных ее параметрах. Однако графическое решение не позволяет установить аналитические зависимости между изменением параметров устройства и величинами его токов и напряжений, определить оптимальные значения параметров и т. п. Аналитические методы обеспечивают установление таких зависимостей, и в этом их главное достоинство. При анализе сложных схем особенно с высокой точностью аналитические решения оказываются или очень громоздкими, или практически невозможными. Тогда применяют машинные методы исследования.

Определим графически (рис. 2.2) ток, протекающий через резистивный нелинейный элемент, под действием напряжения

Используемый для этого метод проекций состоит в следующем: на графике замечаем величины и в различные моменты затем по вольт-амперной характеристике находим соответствующие значения тока и откладываем их плоскости

Огибающая последних дает зависимость Построение удобно начинать с определения тока в моменты, соответствующие максимальному, минимальному и среднему значениям напряжения и лишь затем находить промежуточные значения тока. При воздействии гармонического сигнала (2.1) ток оказывается периодической функцией той же частоты но иной формы.

Нелинейными электрическими элементами (НЭ) цепи называются элементы, параметры которых зависят от напряжений, токов, магнитных потоков и других величин. Параметры объектов, представленных электрической цепью практически всегда нелинейны, но если степень выраженности этой нелинейности невелика, то их считают линейными. Если же пренебречь нелинейностью нельзя, то анализ процессов в цепи проводят с учетом реальных характеристик элементов.

В настоящее время нелинейные элементы получили очень широкое распространение, т.к. с их помощью решаются задачи принципиально неразрешимые на базе линейных объектов. К ним относятся такие задачи, как выпрямление переменного тока, стабилизация тока и напряжения, преобразование формы сигналов, усиление и др.

При изучении линейных электрических цепей было отмечено, что для анализа электромагнитных процессов используются три основных параметра , и . У линейных элементов эти отношения постоянны, у нелинейных – зависят от тока или напряжения.

Нелинейные резисторы характеризуются вольт-амперными характеристиками ; индуктивности – вебер-амперными , а емкости – кулон-вольтными . Эти характеристики могут задаваться в виде таблиц, графиков или аналитических функций.

Самое широкое распространение в технике получили нелинейные резисторы, поэтому в дальнейшем мы остановимся на вольт-амперных характеристиках (ВАХ), но все рассмотренные принципы и методы анализа могут быть использованы также для цепей с нелинейными индуктивностями и емкостями.


На рисунке а показана ВАХ полупроводникового диода. Она имеет ветви в первом и третьем квадрантах, соответствующие положительному и отрицательному направлениям приложенного напряжения, называемые характеристиками прямого и обратного смещения. С увеличением напряжения на диоде в обоих направлениях вначале ток увеличивается очень мало, а затем происходит его резкое увеличение. Этот элемент относится к неуправляемым нелинейным двухполюсникам .

На рисунке б приведены характеристики фотодиода при различных освещенностях. Основным режимом работы фотодиода является режим обратного смещения, в котором при постоянном световом потоке (Ф) ток остается практически неизменным в широком диапазоне изменения напряжения. Модуляция светового потока, освещающего фотодиод, будет приводить к модуляции протекающего тока. Таким образом, фотодиод является управляемым нелинейным двухполюсником

Третьим НЭ, ВАХ которого показана на рис. в, является тиристор. Это управляемый НЭ, т.к. его ВАХ зависит от величины тока управления . Рабочим участком характеристик является первый квадрант. Начальный участок характеристик соответствует малым токам при больших напряжениях, т.е. большому сопротивлению или закрытому состоянию, а конечный – большим токам при малых напряжениях (малому сопротивлению или открытому состоянию). Переход из закрытого состояния в открытое происходит при подаче на управляющий вход соответствующего тока. Обратный переход происходит при снижении протекающего тока.

Другим управляемым НЭ является полупроводниковый транзистор (рис. г). Он работает при прямом смещении и протекающий через него ток зависит от величины тока базы .

Тиристор и транзистор относятся к группе управляемых нелинейных трехполюсников , т.к. включаются в электрическую цепь тремя точками. Поэтому при анализе цепей с управляемыми трехполюсниками требуются минимум две группы ВАХ относительно какой-либо общей точки прибора.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МАГНИТОГОРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ им. Г.И. НОСОВА»

КАФЕДРА ЭЛЕКТРОТЕХНИКИ И ЭЛЕКТРОТЕХНИЧЕСКИХ СИСТЕМ

О.И. Петухова, Л.В. Яббарова, Ю.И. Мамлеева

МЕТОДЫ АНАЛИЗА НЕЛИНЕЙНЫХ ЦЕПЕЙ

1.1. Нелинейные элементы и их характеристики 3

1.2.3. Расчет цепей при смешанном соединении элементов 7

1.2.4. Преобразование активных нелинейных двухполюсников 8

1.2.5. Анализ разветвленных цепей 10

1.3. Аппроксимация характеристик нелинейных элементов 12

1.3.1. Выбор аппроксимирующей функции 12

1.3.3. Аппроксимация ВАХ в окрестностях рабочей точки 18

2. МАГНИТНЫЕ ЦЕПИ 19

2.1. Основные понятия 19

2.2. Законы Ома и Кирхгофа для магнитных цепей 21

2.3. Расчет магнитных цепей постоянного тока 23

3.1. Особенности периодических процессов в электрических цепях с инерционными нелинейными элементами 27

3.2. Особенности периодических процессов в цепях с безинерционными нелинейными сопротивлениями 30

3.3. Электромагнитные процессы в катушке с ферромагнитным сердечником 31

1. НЕЛИНЕЙНЫЕ ЦЕПИ

1.1. Нелинейные элементы и их характеристики

Характеристики большинства реальных элементов в той или иной степени нелинейны. В одних случаях нелинейность элементов невелика и при построении упрощенной модели ею можно пренебречь, в других – нелинейностью пренебречь нельзя. Более того, функционирование большинства радиоэлектронных устройств, невозможно без нелинейных элементов (выпрямление, умножение, ограничение, генерирование и т.д.).

Реальные нелинейные элементы подразделяются на безинерционныеи инерционные. Если зависимость между мгновенными значениями тока и напряжения элементов при периодическом воздействии определяется статической вольт - амперной характеристикой (ВАХ), то элемент относится к безинерционнымнелинейным элементам. Если статическая ВАХ и динамическая, снятая при частоте, равной или меньшей рабочей, не совпадают, то такой элемент следует рассматривать какинерционный.

Таким образом, инерционный нелинейный элемент является линейным относительно мгновенных значений тока и напряжения, а ВАХ, связывающая действующие значения оказывается нелинейной. Безинерционные элементы являются нелинейными как в отношении мгновенных значений
,
, так и в отношении действующихи.

В зависимости от числа внешних выводов различают нелинейные элементы двухполюсные (диоды, термисторы) имногополюсные (транзисторы, триоды, пентоды). Вольт - амперная характеристика нелинейного двухполюсного элемента может быть симметричной или несимметричной. ВАХ двухполюсника с симметричной характеристикой представлена на рис.1. Для нее выполняется условие:

,
. (1)

Очевидно, что режим работы нелинейной цепи не изменится, если выводы нелинейного элемента с симметричной характеристикой поменять местами. Если условие (1) не выполняется, ВАХ – несимметрична.

Отношение напряжения, измеряемого отрезком АВ к току, измеряемому отрезком ОВ (см.рис.1.), определяет в некотором масштабе
статическое сопротивлениеR в точке А.

(2)

Предел отношения приращения напряжения на участке цепи к приращению тока в нем или производная от напряжения по току в том же масштабе
, определяет дифференциальное сопротивление:

. (3)

Различают нелинейные элементы с монотоннойи немонотоннойВАХ. Для монотонныхВАХ иливсегда больше нуля.

Немонотонные характеристики разделяются на N-и S-типы. У элементов с N-образной характеристикой (рис. 2.а) одному и тому же значению тока может соответствовать несколько различных напряжений. У S-образнойВАХ одному значению напряжения может соответствовать несколько токов (рис. 2.б).

Рис.2. ВАХ различных нелинейных элементов

а) немонотонная N -типа; б) немонотонная S – типа;

в) ВАХ неэлектрически управляемого двухполюсника - термистора.

Вид ВАХ нелинейного элемента может зависеть от некоторой величины, не связанной с токами и напряжениями цепи, в которую включен элемент, в частности от температуры (рис. 2.в), освещенности, давления и т.д. Такие элементы относятся кнеэлектрически управляемым двухполюсникам.

Рис.3. Электрически управляемый элемент

а) транзистор; б) семейство входных ВАХ;

в) семейство выходных ВАХ.

Важнейший класс нелинейных элементов составляют электрическиуправляемые элементы(транзисторы, тиристоры, и т.д.). Они имеют два основных электрода и один управляющий (рис.3.а). Ток элемента определяется уравнениями:

или
. (4)

Выводы нелинейного управляемого трёхполюсника образуют с остальной частью цепи два контура – основной (выходной) и управляющий (входной).

Управляемые элементы характеризуются семействами ВАХ: выходными и входными. (рис.3.б,с)

Вид ВАХ нелинейного управляемого элемента существенно зависит от схемы включения элемента, т.е. от того какой из электродов является общим для основного и управляющего контуров. На принципиальных электрических схемах реальные нелинейные элементы изображаются с помощью установленных ЕСКД условных графических обозначений (рис.4).

Рис.4 Обозначения нелинейных элементов

Предмет: Теория автоматического управления

Тема: НЕЛИНЕЙНЫЕ ЭЛЕМЕНТЫ


1. Классификация нелинейных элементов

Нелинейные зависимости z = f(x) можно классифицировать по различным признакам:

1. По гладкости характеристик: гладкая - если в любой точке характеристики существует производная dz/dx, т. е. функция дифференцируема (рис. 1а, б); кусочно-линейная - характеристика, в которой производные имеют разрыв первого (рис.2а) или второго рода (рис. 2б).

Рис. 3

По симметрии: четно-симметричные - симметричные относительно оси ординат, т. е. z(х) = z (- х) (рис. 4а); нечетно-симметричные - сим-метричные относительно начала координат, при этом z (х) = - z (- х) (рис. 4б); не симметричные (рис. 4в).


Рис. 4

2. Нелинейные цепи

Нелинейными называются цепи, в состав которых входит хотя бы один нелинейный элемент. Нелинейные элементы описываются нелинейными характеристиками, которые не имеют строгого аналитического выражения, определяются экспериментально и задаются таблично или графиками.

Нелинейные элементы можно разделить на двух – и многополюсные. Последние содержат три (различные полупроводниковые и электронные триоды) и более (магнитные усилители, многообмоточные трансформаторы, тетроды, пентоды и др.) полюсов, с помощью которых они подсоединяются к электрической цепи. Характерной особенностью многополюсных элементов является то, что в общем случае их свойства определяются семейством характеристик, представляющих зависимости выходных характеристик от входных переменных и наоборот: входные характеристики строят для ряда фиксированных значений одного из выходных параметров, выходные – для ряда фиксированных значений одного из входных.

По другому признаку классификации нелинейные элементы можно разделить на инерционные и безынерционные. Инерционными называются элементы, характеристики которых зависят от скорости изменения переменных. Для таких элементов статические характеристики, определяющие зависимость между действующими значениями переменных, отличаются от динамических характеристик, устанавливающих взаимосвязь между мгновенными значениями переменных. Безынерционными называются элементы, характеристики которых не зависят от скорости изменения переменных. Для таких элементов статические и динамические характеристики совпадают.

Понятия инерционных и безынерционных элементов относительны: элемент может рассматриваться как безынерционный в допустимом (ограниченном сверху) диапазоне частот, при выходе за пределы которого он переходит в разряд инерционных.

В зависимости от вида характеристик различают нелинейные элементы с симметричными и несимметричными характеристиками. Симметричной называется характеристика, не зависящая от направления определяющих ее величин, т.е. имеющая симметрию относительно начала системы координат. Для несимметричной характеристики это условие не выполняется, т.е. Наличие у нелинейного элемента симметричной характеристики позволяет в целом ряде случаев упростить анализ схемы, осуществляя его в пределах одного квадранта.

По типу характеристики можно также разделить все нелинейные элементы на элементы с однозначной и неоднозначной характеристиками. Однозначной называется характеристика, у которой каждому значению х соответствует единственное значение y и наоборот. В случае неоднозначной характеристики каким-то значениям х может соответствовать два или более значения y или наоборот. У нелинейных резисторов неоднозначность характеристики обычно связана с наличием падающего участка, а у нелинейных индуктивных и емкостных элементов – с гистерезисом.

Наконец, все нелинейные элементы можно разделить на управляемые и неуправляемые. В отличие от неуправляемых управляемые нелинейные элементы (обычно трех- и многополюсники) содержат управляющие каналы, изменяя напряжение, ток, световой поток и др. в которых, изменяют их основные характеристики: вольт-амперную, вебер-амперную или кулон-вольтную.

В зависимости от вида составляющих нелинейных элементов, называют нелинейные цепи.

3. Коэффициент усиления нелинейного элемента

Рассмотрим нелинейный элемент (рис. 5). Подадим на вход нелинейного элемента гармонический сигнал с амплитудой – А 0 и определим первую гармонику выходного сигнала.


При этом для входного и выходного сигналов можно записать следующие соотношения

(1)

где: - модуль вектора; - аргумент вектора.

Рассмотрим характеристику нелинейного элемента -, которая называется комплексным коэффициентом передачи нелинейного элемента. Эту характеристику можно строить в комплексной плоскости также, как и комплексный коэффициент передачи линейной части. При этом характеристика - зависит от частоты сигнала и не зависит от его амплитуды. Характеристика - зависит от амплитуды входного сигнала и не зависит от частоты, так как нелинейный элемент является безинерционным. Для однозначных характеристик его значения является действительными величинами, а для многозначных - комплексными.

Рассмотрим примеры построения комплексных коэффициентов передачи для наиболее характерных нелинейных элементов - .

1. Нелинейный элемент типа "усилитель с ограничением". Характеристики звена показаны на рис. 6. Подобными характеристиками обладают различного типа усилительные и исполнительные элементы автоматики (электронные, магнитные, пневматические, гидравлические и др.) в области больших входных сигналов.

Если амплитуда входного воздействия меньше а, то это обычное линейное безинерционное звено, при этом коэффициент усиления к является постоянной величиной. Фазовый сдвиг между входом и выходом равен нулю, поскольку характеристика нелинейного элемента является симметричной. По мере увеличения амплитуды - коэффициент усиления уменьшается. В некоторых методах исследования нелинейных систем используется характеристика обратного комплексного коэффициента передачи нелинейного элемента (-1/). Эта характеристика приведена на рис. 6.

Так как фазового сдвига между гармониками входного и выходного сигнала нет, то характеристика совпадает с вещественной осью.

Нелинейный элемент типа " зона нечувствительности ". Характеристики звена показаны на рис. 7. Подобными характеристиками обладают различного типа усилители в области малых входных сигналов.

Рис. 7

Если амплитуда входного сигнала расположена в пределах диапазона ± а, то выходной сигнал равен нулю в противном случае выходной сигнал равен не нулю, так как появляются вершины входной гармоники. Фазового сдвига нет. При больших амплитудах входного сигнала коэффициент усиления имеет постоянное значение, т. е. нелинейность не оказывает существенного влияния на выходной сигнал.

3. Нелинейный элемент типа " трехпозиционное реле без гистерезиса". Характеристики звена показаны на рис.8. Эта характеристика присуща релейным системам с обратной связью.

Так как характеристика однозначная, то фазового сдвига нет. Если амплитуда входного сигнала®¥, то выходной сигнал превращается в последовательность импульсов. При малых и больших амплитудах коэффициент k - мал.

Рис. 8

4. Нелинейный элемент типа "релейная характеристика". Характеристики звена показаны на (рис. 9).


5. Нелинейный элемент типа "люфт, зазор". Характеристики данного

нелинейного элемента приведены на рис. 10.

Модели нелинейных элементов. Модели нелинейных элементов могут быть реализованы путем включения в цепь операционного усилителя (на вход или в обратную связь) нелинейных двухполюсников. В зависимости от характеристик двухполюсника и способа его подключения можно реализовать любую нелинейную зависимость (рис. 11а, б, в).


Рис. 11

Модели нелинейных звеньев широко используются при моделировании систем автоматического управления на ЭВМ.


Литература

1. Атабеков Г.И., Тимофеев А.Б., Купалян С.Д., Хухриков С.С. Теоретические основы электротехники (ТОЭ). Нелинейные электрические цепи. Электромагнитное поле. 5-е изд. Изд-во: ЛАНЬ, 2005. – 432с.

2. Бесекерский В.А., Попов Е.П. "Теория систем автоматического управления". Профессия, 2003 г. - 752с.

3. Гаврилов Нелинейные цепи в программах схемотехнического моделирования. Изд-во: СОЛОН-ПРЕСС, 2002. – 368с.

4. Дорф Р., Бишоп Р. Автоматика. Современные системы управления. 2002г. – 832с.

5. Сборник задач по теории автоматического регулирования и управления/ Под редакцией В. А. Бесекерского. - M.: Наука, 1978.


© 2024
maccase.ru - Android. Бренды. Железо. Новости